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Abstract

This paper presents an analytical approach using higher order plate theories to determine wave
reflections from and transmissions through a damaged region in a beam. The damaged region is either
treated as two split beams or as an inhomogeneity. The reflection ratios and transmission ratios are found
to depend strongly on the frequency of the incident flexural waves, as well as the size of the damage, which
gives rise to strong stop/pass band behaviour. Using the spectral analysis method, the transient wave
propagation in a beam with a part-through delamination is predicted and compared with experimental
results, indicating a good agreement in the phases and amplitudes of both the reflected and transmitted
waves.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Structural health (damage) monitoring using embedded actuators and sensors has received
significant attention recently as a promising means for improved asset maintenance and structural
integrity management [1–3]. In this regard, quantitative detection of damage (such as corrosion of
metallic materials and delamination in fibre reinforced composites), which is critical to the
assessment of its impact to structural safety, remains a significant challenge, although recent
efforts using Lamb waves have shown considerable promises [4–9]. Since most load-bearing
composite structures are designed to tolerate 10–20mm diameter delaminations [4,5], structural
health monitoring techniques should ideally be able to reliably detect delamination damage less
than this design limit.
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It is now recognized that the resonant frequencies of plates or shells are not very sensitive to
small delaminations [10,11], even for modes up to orders of 20–30 [12]. The main reason for this
lack of sensitivity of vibration response to local damage is because the resonant frequency
depends strongly on the overall size of a component and its boundary supports. Consequently, a
more sensitive approach would be to probe changes associated with localized damage directly,
such as exploiting the influence of damages on the propagation of stress waves [3,13]. In this case,
parameters of primary importance are the magnitudes and phases of the reflected and transmitted
waves. For plate-like structures, the Rayleigh–Lamb (see e.g.,Ref. [14]) waves have been the
method of choice in the majority of investigations [4–9]. Although the Rayleigh–Lamb solution is
exact, it is rather unwieldy for characterizing the wave reflection from and transmission through a
damage, due to the need to account for the mode conversions among an infinite number of wave
modes. Even when the excitation frequency is below the cut-off frequency of the first order modes
(i.e., there is only one propagating incident wave), the higher order modes, which are near-field
waves, are crucial to the satisfaction of continuity conditions and equilibrium conditions at the
edge of a damaged region.

An alternative approach would be to employ higher order plate theories [15] to characterize the
flexural waves [16] and extensional waves [17]. The Mindlin flexural wave theory can be viewed as
an extension of Timoshenko beam theory to plates. Compared to methods based on Rayleigh–
Lamb waves, plate wave approach offers several important advantages [18,19]. For instance, it
greatly simplifies the determination of the effect of a damage on the reflected and transmitted
waves, as will be demonstrated later in this paper. Furthermore, the plate wave method allows the
effects of material damping or energy dissipation on wave attenuation to be readily taken into
account. Other advantages include the applicability to orthotropic materials, such as composite
materials. More importantly, the plate wave method enables the boundary effects of finite size
plates to be predicted [20], which is critical to the development of a viable structural health
prognostic technique for complex structures. Doyle and Kamle [21] demonstrated the
applicability of elementary beam theory in capturing the transient wave propagation in a beam
subjected to low-energy impact.

Due to the importance of delamination damage in composites, which are often invisible to the
naked eye, several studies have examined the influence of delamination, in the simple case of a
beam containing through-width delamination, on the vibration and wave propagation behaviour
of beams. Wang et al. [22], and Tracy and Pardoen [11] analyzed a split beam, with the split region
being treated as two separate beams, using the elementary beam theory. Mujumdar and
Suryanarayan [23] addressed one deficiency of the analysis by Wang et al. [22] in the case of
asymmetric delamination by treating the split region as two coupled beams with identical
transverse displacement, but still within the framework of elementary beam theory. Farris and
Doyle [24] employed the Timoshenko beam theory to analyze the split beam problem, with the
split region being treated as two separate beams. None of these analysis considered the influence
of multiple reflection/transmission at the two ends of a delamination. In the context of noise/
vibration isolation, Mace et al. [25] investigated the wave reflection/transmission in a three
waveguide system, accounting for multiple reflections/transmissions at the junctions, but the
analysis was limited to the elementary beam theory. A different approach, as first proposed by
Kulkarni and Frederick [10], is to model the effect of delamination as a reduced bending rigidity
over the delamination zone. The moment of inertia of the delaminated zone was taken to be the
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sum of the moments of inertia of the delaminated layers [10]. This homogenization approach,
which is most appropriate for the case of multiple delaminations induced by impact damages, is
more readily extended to a two dimensional (2-D) analysis [18,19].

The purpose of this paper is to present an analytical method to determine the reflections from
and transmissions through a delaminated region in a one-dimensional (1-D) beam which is
modelled using the Timoshenko beam theory. Two different approaches, a homogenization
approach and a micro-mechanics approach, will be developed, in which the delaminated region is
either modelled, respectively, as an equivalent inhomogeneity or as two split beams (Fig. 1). This
paper is structured as follows. Section 2 summarizes the equations and solutions according to
Timoshenko beam theory and Kane–Mindlin’s extensional plate theory. In Section 3 the
reflection and transmission coefficients for a beam with a semi-infinite delamination and a
bimaterial beam are determined, corresponding to the micro-mechanics approach and the
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homogenization approach, respectively. These analyses are then extended in Section 4 to a
damage zone of finite length, to account for multiple reflections and transmissions. Finally, a
comparison is also made in Section 5 with experimental results of Diaz Valdes and Soutis [6] to
demonstrate the capability of the analytical method.

2. Dispersion relationship for plate waves

2.1. Flexural waves

The equations of motion of Timoshenko beam theory are expressed in terms of the lateral
displacement w and the angle of rotation y [26,27],

k2c2
s

@2w

@x2
�

@y
@x

� �
�

@2w

@t2
¼ 0; ð1aÞ

c2
0

@2y
@x2

þ k2c2
s

q2

@w

@x
� y

� �
�

@2y
@t2

¼ 0; ð1bÞ

where k denotes a shear correction factor and (referring to nomenclature for symbols)

c0 ¼
ffiffiffiffiffiffiffiffiffiffi
E0=r

p
; cs ¼

ffiffiffiffiffiffiffiffiffi
G=r

p
; q ¼

ffiffiffiffiffiffiffiffiffi
I=A

p
; k ¼ p=

ffiffiffiffiffi
12

p
: ð2Þ

Dispersion relations can be obtained by substituting the following expressions into the
Timoshenko equations:

w ¼ w0e
�iðkx�otÞ; y ¼ y0e

�iðkx�otÞ ð3Þ

yielding eigenvectors (which give the relationship between w0 and y0) and the following four
eigenroots:
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Depending on the frequency, there are either only two propagating waves (one positive-going and
one negative-going) plus two evanescent (near-field) waves or four propagating waves (two
positive-going and two negative-going). The cut-off frequency for the second flexural mode,
obtained by setting k2 ¼ 0; is

oc ¼ k
cs

q
: ð5Þ

In the case of a beam with a rectangular cross-section ðq ¼ h=
ffiffiffiffiffi
12

p
Þ; the Timoshenko beam theory

correctly recovers the cut-off frequency given by the Rayleigh–Lamb solution oc ¼ pcs=h by
setting k ¼ p=

ffiffiffiffiffi
12

p
:

A general solution of the homogeneous equations (1a) and (1b) is given by

yðx; tÞ ¼
X4

m¼1

ame�ikmxeiot; ð6Þ
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wðx; tÞ ¼
X4

m¼1

amFme�ikmxeiot; ð7Þ

where the amplitude ratios are given by the eigenvector,

Fm ¼
ikm

k2
m � ðo=kcsÞ

2
ðm ¼ 1; 2; 3; 4Þ: ð8Þ

Phase velocities and group velocities are given by cp ¼ o=k and cg ¼ do=dk: It is can be seen from
Eq. (4) that both velocities depend parametrically on only two non-dimensional variables, q/l and
c0=kcs; where l denotes the wavelength.

The dispersion curves based on Eq. (4) are shown in Fig. 2 together with the exact solution of
the Rayleigh–Lamb theory (see e.g., Ref. [14]). It is clear that the Timoshenko beam theory is
accurate for the first flexural mode at any frequency, and is accurate for the second mode for
op1:3oc approximately. By contrast, the Euler beam theory is accurate only up to about 5% of
the cut-off frequency op0:05oc:
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Fig. 2. Flexural waves in a homogeneous beam: (a) phase velocity and (b) group velocity.
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2.2. Extensional waves

The higher order plate theory by Kane and Mindlin [17] can be viewed as the equivalent of
Timoshenko beam theory for extensional waves: it is a fourth order plate theory and predicts two
extensional waves. The wave numbers can be expressed as follows, setting the shear correction
factor k ¼ p=

ffiffiffiffiffi
12

p
;

km ¼ 7
o
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3 � 4n
4 � 4n
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where ccð¼ cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� nÞ=ð1� 2nÞ

p
Þ denotes the longitudinal wave speed. The cut-off frequency for

the second extensional mode is
oce ¼ pcc=h ð10Þ

which is equal to twice the cut-off frequency of flexural wave oc in Eq. (5) in the case of n ¼ 1=3:
Results of the phase and group velocities for the extensional waves are shown in Fig. 3, together
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with the exact solutions by Rayleigh–Lamb theory. In the limit of infinite frequency ðo-NÞ; the
phase velocities of the first and second extensional modes asymptote to cs and 2cs; respectively.
Therefore, the Kane–Mindlin theory correctly recovers the wave speeds of the first extensional
mode at both the limits of zero frequency and infinite frequency, thus providing an improved
solution over the elementary rod theory. However, for frequencies above the cut-off frequency of
the second flexural wave (or half the cut-off frequency of the second extensional mode) the
accuracy of the Kane–Mindlin theory drops off quite considerably [26]. These results indicate
that, as compared to the elementary beam bending theory, the elementary rod theory seems to
remain accurate up to the cut-off frequency oc of the second flexural wave. Improvement can be
achieved by adding a third mode [27]. However, the additional degrees of freedom associated with
the three-mode theory render applications to structural analysis significantly more complicated.
Consequently, the simple rod theory will be employed in the present analysis.

3. Bimaterial and semi-infinite split beam

3.1. Homogenization approach

Consider a bimaterial beam shown in Fig. 1(d) with the positive-going incident waves given by

yiðx; tÞ ¼ ½ae�ik1x þ be�ik2x�eiot; ð11Þ

wiðx; tÞ ¼ ½F1ae�ik1x þ F2be�ik2x�eiot: ð12Þ

Since the second mode is a near-field (or evanescent) wave when the frequency is below the cut-off
frequency, i.e., oooc; the magnitude b of the second mode should be taken to be zero when the
excitation is located at x-�N: While the evanescent wave can therefore be ignored in
characterizing the incident wave, it must be retained when determining the reflection and
transmission coefficients [28]. The total displacement of the beam in the left-hand region xp0 is
given by the sum of the incident and reflected waves,

y�ðx; tÞ ¼ ½ae�ik1x þ be�ik2x þ are
ik1x þ bre

ik2x�eiot; ð13Þ

w�ðx; tÞ ¼ ½F1ae�ik1x þ F2be�ik2x � F1are
ik1x � F2bre

ik2x�eiot: ð14Þ

In the right-hand region xX0; which represents a damaged material with different material and
geometrical properties from the left-hand region, there are two transmitted flexural waves, with
one being possibly a near-field wave. The displacement of the beam in the region xX0 is thus
given by

yþðx; tÞ ¼ ½ate
�ikn

1x þ bte
�ikn

2x�eiot; ð15Þ

wþðx; tÞ ¼ ½Fn

1 ate
�ikn

1x þ Fn

2 bte
�ikn

2x�eiot; ð16Þ
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where
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ð18Þ

with

c	0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E	=r	ð1� ðnnÞ2Þ

q
; c	s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
G	=r	

q
; q	 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
I	=A	

q
: ð19Þ

Here the superscript ‘‘*’’ is employed to distinguish parameters pertaining to the damaged region.
Since the beam is continuous at x ¼ 0; explicit expressions for the four unknowns ðar; ar; at; btÞ

can be readily determined from the continuity conditions:

y� ¼ yþ; w� ¼ wþ; M� ¼ Mþ; V� ¼ Vþ ðat x ¼ 0Þ; ð20Þ

where the bending moment and shear force are given by

M ¼ E0I
@y
@x

; V ¼ E0I �
@2y
@x2

þ
1

c2
0

@2y
@t2

� �
ð21Þ

The amplitudes of the reflected and transmitted waves are related to those of the incident wave via
the following relationship:

ar

br

( )
¼

r11 r12

r21 r22

" #
a

b

( )
; ð22Þ

at

bt

( )
¼

t11 t12

t21 t22

" #
a

b

( )
; ð23Þ

where ½r� and ½t� denote the reflection matrix and the transmission matrix. The algebraic
expressions for the amplitudes of the reflected and transmitted waves are rather lengthy, so will be
omitted for the sake of brevity. Numerical values are shown in Fig. 4(a) and (b) for the reflection
ratios and the transmission ratios for a special case of I	 ¼ I=4; A	 ¼ A (leading to q	 ¼ q=2),
E	 ¼ E; and r	 ¼ r; which can be considered to represent a beam with a symmetric delamination.
The cut-off frequency of the second flexural wave in damaged region is twice the cut-off frequency
for the undamaged region for this case, and thus the damaged region has one propagating wave
and one evanescent wave, provided that the incident wave is flexural only.

The fact that the off-diagonal terms in the reflection and transmission matrices (r12;r21;t12;t21)
are non-zero suggests that there is a significant level of mode conversion occurring at the junction.
It is also clear that magnitudes of the near-field waves are comparable to or even greater than
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those of the propagating waves, even for frequencies below oc; indicating the importance of
accounting for the effect of mode conversion. It is worth noting that in the limit of o-0; the
present results recover those according to elementary beam theory [28–30].

3.2. Micro-mechanics approach

Consider the case of a semi-infinite split beam as shown in Fig. 1(c). Using the Euler beam
theory, Wang et al. [22] analyzed this problem with the split region being modelled as two separate
beams, which led to overlapping between the two separated beams in the case of off-mid-plane
(asymmetric) delamination. To address this problem, Mujumdar and Suryanarayan [23] presented
an analysis in which the two split beams in the delaminated region were constrained to have
identical transverse displacement, while free to slide over each other in the longitudinal direction.
Again, this latter attempt was also restricted to the Euler beam theory, and hence the results are
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limited to frequencies o{oc: To extend the analysis to higher frequencies, Farris and Doyle [24]
employed the Timoshenko beam theory, but the split region was modelled as two separate beams,
which would lead to physically unrealistic overlapping between the two split beams in the case of
asymmetric delamination. In the analysis presented here, the constrained beam approach of
Mujumdar and Suryanarayan [23] is extended to analyze two coupled Timoshenko beams.

As in Section 3.1, the flexural waves (incident and reflected waves) in the region xp0 are given
by,

y�ðx; tÞ ¼ ½ae�ik1x þ be�ik2x þ are
ik1x þ bre

ik2x�eiot; ð24Þ

w�ðx; tÞ ¼ ½F1ae�ik1x þ F2be�ik2x � F1are
ik1x � F2bre

ik2x�eiot; ð25Þ

However, due to asymmetric delamination, a longitudinal wave is also reflected from and
transmitted into the split beam region. The negative-going reflected longitudinal wave in the
region (xp0) can be expressed as

u�ðx; tÞ ¼ geikcxeiot; ð26Þ

where kc ¼ o=c0:
Denoting the contact pressure between the two split beams as pðxÞ; as shown in Fig. 5, with the

identical displacement constraint, i.e., %w ¼ %%w � #w; the following governing equations can be
derived:

k2G %A
@2 #w

@x2
�

@%y
@x

� �
¼ r %A

@2 #w

@t2
þ p; ð27aÞ

E0 %I
@2 %y
@x2

þ k2G %A
@ #w

@x
� %y

� �
¼ r %I

@2 %y
@t2

ð27bÞ

for the upper split beam, and

k2G %%A
@2 #w

@x2
�

@ %%y
@x

" #
¼ r %%A

@2 #w

@t2
� p; ð28aÞ
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E0 %%I
@2 %%y
@x2

þ k2G %%A
@ #w

@x
� %%y

� �
¼ r %%I

@2 %%y
@t2

ð28bÞ

for the lower split beam.
The contact pressure p can be eliminated by adding Eqs. (27a) and (28a), noting %A þ %%A ¼ A; to

obtain

k2G A
@2 #w

@x2
� %A

@%y
@x

� %%A
@ %%y
@x

" #
¼ r A

@2 #w

@t2
ð29Þ

Dispersion relations can now be determined by substituting the following expressions into
Eqs. (29), (27b) and (28b),

%y ¼ %y0e
�ið #kx�otÞ; %%y ¼ %%y0e

�ið #kx�otÞ; #w ¼ #w0e
�ið #kx�otÞ; ð30Þ

where the magnitudes (%y0; %%y0; #w0) and the wave number k are given by the following equation:

ðro2 � k2G #k2ÞA ik2G %A #k ik2G %%A #k

ik2G %A #k E0 %I #k2 þ k2G %A � r %Io2 0

ik2G %%A #k 0 E0 %%I #k2 þ k2G %%A � r %%Io2

2
664

3
775

#w0

%y0

%%y0

8><
>:

9>=
>; ¼ 0: ð31Þ

The resulting characteristic equation is bicubic, and has three roots, giving rise to three modes of
flexural wave. The positive-going waves in the split beams can be described as

%y ¼ ate
�ið #k1x�otÞ þ bte

�ið #k2x�otÞ þ cte
�ið #k3x�otÞ; ð32Þ

%%y ¼ G1ate
�ið #k1x�otÞ þ G2bte

�ið #k2x�otÞ þ G3cte
�ið #k3x�otÞ; ð33Þ

#w ¼ F1ate
�ið #k1x�otÞ þ F2bte

�ið #k2x�otÞ þ F3cte
�ið #k3x�otÞ; ð34Þ

where the ratios Gi and Fi (i=1,2,3) can be determined from Eq. (31). The longitudinal waves in
the two split beams are given by

%uðx; tÞ ¼ %ge�ikcxeiot; ð35Þ

%%uðx; tÞ ¼ %%ge�ikcxeiot; ð36Þ

From the following continuity and equilibrium conditions at x ¼ 0 the eight unknowns (g; %g; %%g; ar;
br; at; bt; ct) can be determined:

y� ¼ %y; y� ¼ %%y; w� ¼ #w; %u ¼ u� � y�
h1

2
; %%u ¼ u� þ y�

h2

2

T� ¼ %T þ %%T; M� ¼ %M þ %%M � %T
h1

2
þ %%T

h2

2
; V� ¼ %V þ %%V ðx ¼ 0Þ;

ð37Þ

where the longitudinal forces are given by

T� ¼ E0A
@u�

@x
; %T ¼ E0 %A

@ %u

@x
; %%T ¼ E0 %%A

@ %%u

@x
: ð38Þ
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It is also clear that the contact pressure p, which can be determined from Eq. (27a), exhibits a
sinusoidal distribution along the beam length. Therefore the contact pressure may become
negative at some locations along the beam, which indicates possible separation of the two split
beams. A rigorous analysis would need to deal with the mixed boundary conditions (zero
displacement over some portions of the beam and zero contact pressure over the remaining beam)
between the two split beams. This will not be further pursued here.

In the case of symmetric delamination (h1 ¼ h2 ¼ h=2), it turns out that %y � %%y and p � 0:
Consequently, the characteristic equation (31) degenerates to that for a single split beam. In this
case, there are only five unknowns ( %g; ar; br; at; bt). The results of the reflection ratios and the
transmission ratios versus the frequency of the incident flexural waves are shown in Fig. 6. A
comparison with the results shown in Fig. 4 suggests that in the limit o-0 the homogenization
method and the micro-mechanics method yield identical solutions. However, as the frequency
increases, the two solutions start to deviate from each other.
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3.3. Power reflection and transmission

The power carried by a propagating wave in a Timoshenko beam can be determined by
considering the total work done by internal forces (shear force and bending moment) across a
section [30]. Referring to Fig. 7 for a section across the vibrating beam, the shear force (V) is in the
same direction as the velocity (@w=@t), whereas the bending moment works against the rate of
rotation (@y=@t). Therefore, the total average rate of working per unit time, or the power
transmitted across the section, is

P ¼
1

T

Z T

0

V
@w

@t
� M

@y
@t

� �
dt; ð39Þ

where T denotes the period of the propagating wave. Substituting the real parts of the incident
and the reflected waves given by Eqs. (13) and (14), powers of the incident and the reflected waves
can be expressed as

Pi ¼ rA F1j j2
o3

k1
þ EIok1

� �
aj j2

2
þHðo� ocÞ rA F2j j2

o3

k2
þ EIok2

� �
bj j2

2
; ð40Þ

Pr ¼ rA F1j j2
o3

k1
þ EIok1

� �
arj j2

2
þ Hðo� ocÞ rA F2j j2

o3

k2
þ EIok2

� �
brj j2

2
; ð41Þ

where the Heaviside function H is used to signify that the second wave carries energy only when
the frequency is above its cut-off frequency. It can be shown that in the limit of o-0 (leading to
F1j j-1=k1), the above expressions reduce to the solution by Mead [30] for the case of elementary
beam theory.

Since the evanescent waves (the second incident and reflected waves when oooc; and the
second transmitted wave when ooon

c ) do not propagate energy along the beam, nor do they
dissipate energy, the sum of the reflected energy and the transmitted energy is equal to the incident
energy. This has also been confirmed by the numerical results discussed below. Therefore the
transmitted energy can be readily determined from Pt ¼ Pi � Pr: Fig. 8 shows the ratio of the
reflected energy to the incident energy (Pr=Pi). It is seen that the reflected energy initially decreases
with the frequency, then increases to reach a maximum at a frequency ten per cent above the cut-
off frequency of second mode. For the inhomogeneous beam configuration, the reflected power
shows only a mild decrease with frequency. However, for the case of split beam, the frequency has
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a very strong influence on the reflected power, especially in the low-frequency limit. It is
interesting to note that in the limit of zero frequency, i.e., o-0; both solutions converge to the
solution of elementary beam theory [28,30]. The results also suggest that the split beam
configuration exhibits a lower reflective index than the equivalent inhomogeneous configuration,
primarily due to the mode conversion of flexural waves to longitudinal waves in the split beams.

4. Beam containing a finite size damage or symmetric delamination

4.1. Homogenization approach

Consider a beam containing an inhomogeneity of length l; as shown in Fig. 1(b). It is now
necessary to account for multiple reflections and transmissions at both ends x ¼ 0 and l:
Consequently, a finite size damage will give rise to an infinite number of components, whose
relative phases are determined by the total ‘‘round-trip’’ distance 2l traversed by these wave
components, similar to wave propagation in structural inserts [25,29]. This sum of the infinite
number of reflections will be determined below using the standing wave method.

In the region xo0 the incident and reflected flexural waves are given by

y�ðx; tÞ ¼ ½ae�ik1x þ be�ik2x þ are
ik1x þ bre

ik2x�eiot; ð42Þ

w�ðx; tÞ ¼ ½aF1e
�ik1x þ bF2e

�ik2x � arF1e
ik1x � brF2e

ik2x�eiot ð43Þ

except that the reflected waves (terms pertaining to ar and br) comprise the superposition of
multiple reflections at x ¼ 0 and l; which will be determined from the continuity and equilibrium
conditions at the two junctions.

In the damaged region 0oxol; there are two positive-going waves and two negative-going
waves, resulting from the multiple reflections and transmissions at the two boundaries x ¼ 0 and l:
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The deformation is given by

ynðx; tÞ ¼
X4

m¼1

an

me�ikn
mxeiot; ð44Þ

wnðx; tÞ ¼
X4

m¼1

Fn

m an

m e�ikn
mx eiot; ð45Þ

where kn
m and Fn

m are given by Eqs. (18) and (17).
In the third region x > l; there are only two positive-going waves as given below:

yLðx; tÞ ¼ ½ate
�ik1x þ bte

�ik2x�eiot; ð46Þ

wLðx; tÞ ¼ ½atF1e
�ik1x þ btF2e

�ik2x�eiot ð47Þ

Therefore, the reflection from and transmission across a finite size inhomogeneity are
characterized by eight unknown coefficients (ar; br; an

1; a
n
2 ; a

n
3; a

n
4; at; bt), which can be determined

from the following continuity and equilibrium conditions:

y� ¼ yn; w� ¼ wn; M� ¼ Mn; V� ¼ Vn ðat x ¼ 0Þ; ð48aÞ

yn ¼ yL; wn ¼ wL; Mn ¼ ML; Vn ¼ VL ðat x ¼ lÞ ð48bÞ

Results for a special case of I	 ¼ I=4 (A	 ¼ A; E	 ¼ E; r	 ¼ r) are shown in Fig. 9, where the
reflection and transmission coefficients are defined by Eqs. (22 and 23).

It is clear in Fig. 9 that the reflection ratio r11 oscillates between zero and maximum values that
are dependent on the frequency as well as the bending stiffness of the inhomogeneity relative to
that of the undamaged beam. This varying reflection ratio suggests that optimal frequencies exist
for maximum reflection (minimum transmission) and zero reflection. Consequently, if the
reflection response is to be used for the detection of inhomogeneities, the frequency of the incident
wave may strongly affect the sensitivities. Furthermore, the reflection and transmission ratios
depend on two variables: the normalized frequency and the ratio of damage size to beam
thickness. At the low-frequency limit, however, the present results confirm that the reflection and
transmission ratios depend on only one non-dimensional parameter k1l [25,29].

4.2. Micro-mechanics approach to symmetric delamination

In the case when the main damage is due to a single delamination, a better approach is to model
the delaminated region as consisting of split beams. In the following, attention is focused on the
special case of symmetric delamination, whereas the analysis method is readily applicable to the
asymmetric delamination using either the uncoupled beam or constrained beam approach
outlined in Section 3.

Referring to Fig. 1(a), the flexural wave in the region xp0 incident and reflected flexural waves
are given by

y�ðx; tÞ ¼ ½ae�ik1x þ be�ik2x þ are
ik1x þ bre

ik2x�eiot; ð49Þ

w�ðx; tÞ ¼ ½F1ae�ik1x þ F2be�ik2x � arF1e
ik1x � brF2e

ik2x� eiot: ð50Þ
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For the delaminated region (0oxol), the waves in the two split beams are identical,

%uðx; tÞ ¼ ½ %ge�i %kcx þ %hei %kcx� eiot; ð51Þ

%yðx; tÞ ¼ ½ %ae�i %k1x þ %be�i %k2x þ %cei %k1x þ %dei %k2x� eiot; ð52Þ

%wðx; tÞ ¼ ½ %F1 %ae
�i %k1x þ %F2

%be�i %k2x � %F1 %ce
i %k1x � %F2

%dei %k2x� eiot: ð53Þ

For the region xXD the deformation is given by

yLðx; tÞ ¼ ½ate
�ik1x þ bte

�ik2x�eiot; ð54Þ

wLðx; tÞ ¼ ½atF1e
�ik1x þ btF2e

�ik2x�eiot: ð55Þ

There are a total of 10 unknowns (ar; br; %a; %b; %c; %d; %g; %h; at; bt) which can be determined from the
following continuity and equilibrium conditions:

y� ¼ %y; w� ¼ %w; %u ¼ �y�
h

4
; V� ¼ 2 %V; M� ¼ 2 %M � 2 %T

h

4
ðat x ¼ 0Þ; ð56aÞ

yL ¼ %y; wL ¼ %w; uL ¼ �y�
h

4
; VL ¼ 2 %V; ML ¼ 2 %M � 2 %T

h

4
ðat ¼ lÞ: ð56bÞ

Numerical results of the reflection and transmission ratios, defined by Eqs. (22 and 23), are shown
in Fig. 10 for three different ratios of delamination length to beam thickness. As opposed to the
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inhomogeneity approach, the micro-mechanics approach for mid-plane delamination produces a
stronger pass/stop band behaviour, with the reflection ratio reaching unity at certain frequencies,
which depends on the size of the delamination. An important implication of this pass/stop band
behaviour is that the main detection frequency needs to be optimized to achieve the maximum
sensitivity. This phenomenon is currently being exploited.

5. Comparison with experimental results

To demonstrate the potential of the present theoretical approach, a comparison is presented in
the following between the theoretical predictions and the experimental results of Diaz Valdes and
Soutis [6]. Their specimen, which was made of quasi-isotropic carbon epoxy laminate, is sketched
in Fig. 11 showing the dimensions. From the elastic moduli of the unidirectional ply [6], Young’s
modulus of laminate along the beam length direction is determined to be 50.7GPa. Other relevant
properties are : shear modulus = 5.7GPa and density = 1536 kg/m3.
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The actuator was excited by a 15 kHz sinusoidal pulse of 5.5 cycles modulated by a Hanning
window. Thus, the input strain at x=0 due to this excitation can be mathematically described by

eeðtÞ ¼
�e0 sinð2pf0tÞ

1 � cosð2pf0t=5:5Þ
2

; 0ptp5:5=f0;

0; otherwise;

8<
: ð57Þ

where f0 ¼ 15 kHz. Since the actuator was attached at one free end of the beam, only flexural
wave was excited; similarly only the flexural component of the reflected wave was recorded by the
sensor located next to the actuator. The response at the sensor location x=0 comprises the
reflection from the delamination region, and the wave packet that has travelled the round trip
(transmitted across the delamination, reflected off the other free end of beam, and then re-
transmitted through the delamination). Due to the relatively low frequency being employed
(excitation frequency is only 5% the cut-off frequency of the second flexural wave), it suffices to
consider only the first mode of flexural wave, consequently the Fourier transform of the response
at the sensor location is given byZ

N

�N

eðtÞeiot dt ¼ ð1 þ r11e
�2ik1ðL1�l=2Þ � t211e

�2ik1LÞ
Z

N

�N

eeðtÞeiot dt; ð58Þ

where the reflection ratio r11 and the transmission ratio t11; both being frequency dependent, are
determined from the method presented in Sections 3 and 4 for the homogenization approach and
the split beam approach, respectively. The second term inside the bracket represents the reflection
from the delamination, whereas the third term represents the signal that travelled the ‘‘round-
trip’’: first traversing through the delamination, being reflected from the free end, and then
traversing through the delamination before reaching the sensor. The minus sign in front of the
transmission ratio t11 is to account for the reflection at the free end. Here the reflection ratio r11
and the transmission ratio t11 represents the phase discontinuities produced by the multiple
reflection and transmission process. Responses in the absence of damage can be readily recovered
by setting r11 ¼ 0 and t11 ¼ 1: The forward and inverse Fourier transform can be performed by
the fast Fourier transform technique [27].

Since the actual delamination employed by Diaz Valdes and Soutis [6] was part through the
width of the beam, it is necessary to approximate the delamination by an equivalent through-
width delamination that has the same area as the actual delamination. Denoting the damage of
the delamination region as Ad ; the length of the equivalent damage size leq is given by

leq ¼ Ad=B; ð59Þ
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where B denotes the width of the specimen. For the largest delamination (area=400mm2) being
considered, this gives an equivalent damage size of leq ¼ 16mm. The predictions of the two
methods, together with the experimental results are shown in Fig. 12. Here a time window of 3000
ms with 1024 sampling points are used in the forward and inverse fast Fourier transform,
corresponding to a Nyquist frequency of 170 kHz, about 10 times the centre frequency of the
excitation. It can be seen that the equivalent inhomogeneity approach yields a very good estimate
of the reflected wave from the delamination, whereas the split beam method overpredicts the
reflections. This discrepancy could be attributed to the fact the actual delamination is only partly
through the width of the specimen, which restricts the relative motions between the delaminated
layers. On the other hand, for the signal reflected from the far end of the beam, which has
experienced twice transmission through the delamination region during the round trip, the
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equivalent inhomogeneity approach overestimates the actual response, whereas the split beam
method provides a better correlation with the measured data.

6. Conclusions

By employing higher order plate theories, analytical solutions have been obtained for the
reflections from and transmissions through a damaged region in a beam. The damaged region can
either be modelled as an inhomogeneity with a reduced bending rigidity, or as a split beam
representing delamination. in both cases the plate theory approach allows the complex mode
conversion and the infinite reflections and transmissions due to a finite size damage to be
quantified analytically. However, an extension to 2-D wave scattering is much more readily
achieved by the homogenization approach, as developed by Rose and Wang [18,19]. The
favourable comparison of the present 1-D theory with experimental results is encouraging from
the viewpoint of structural health monitoring.

Appendix A. Nomenclature

cp phase velocity (=o/k)

cg group velocity ð¼ do=dkÞ
c0 rod wave speed ð¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=rð1� n2Þ

p
Þ

cc longitudinal wave speed ð¼ cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� nÞ=ð1� 2nÞ

p
Þ

cs shear velocity ð¼
ffiffiffiffiffiffiffiffiffi
G=r

p
Þ

E Young’s modulus
E0 Young’s modulus under plane-strain conditions ð¼ E=ð1� n2ÞÞ
f frequency
F ratio between displacement and angle of rotation
G shear modulus
h thickness
I flexural stiffness
k wave number
l size of damage
M bending moment
P power carried by propagating waves
q radius of gyration ð¼

ffiffiffiffiffiffiffiffiffi
I=A

p
Þ

r reflection coefficient
t transmission coefficient
T longitudinal force
u longitudinal displacement
V shear force
w transverse displacement
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Greek symbols
k shear correction factor ð¼ p=

ffiffiffiffiffi
12

p
Þ

l wavelength ð¼ 2p=kÞ
r density
o angular frequency ð¼ 2p=f Þ
oc cut-off frequency of the second flexural mode ð¼ pcs=hÞ
oce cut-off frequency of the second extensional mode ð¼ pcc=hÞ
n the Poisson’s ratio
y angle of rotation

Superscript

* damaged region

Subscripts

c longitudinal waves
r reflected waves
t transmitted waves
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